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Abstract: With the rapid development of wireless communication technology and the wide 
application of Intelligent Mobile Terminal, a large amount of geographic text data is generated 
every moment. How to deal with location-aware ranking queries efficiently has become an urgent 
problem. In this paper, a hybrid index structure tp-skq is proposed which supports user preference 
constraints. And based on it, an efficient location-aware ranking query algorithm is coming up. 

1. Introduction 
With the rapid development of wireless communication technology and the wide application of 

Intelligent Mobile Terminal, the integration of geographic location and text data is becoming more 
prevalent. Therefore, an increasing number of Web objects have both location attributes and text 
description. For example, the content published by users is usually closely related to their location 
in micro-blog and WeChat. In the application of sign, users will automatically record their location 
coordinates while checking in. At the same time, users often use words to describe their moods and 
feelings. With the rapid development of location-based services (lbs), more and more 
location-aware data sets are created and used. How to deal with location-aware rank query (lrq) 
efficiently is urgently tackled [1]. 

Traditional lrq included nearest neighbor query (knn) [2] and spatial keyword query (skq) [3]. 
They are widely used in many fields. However, with the introduction of many new data types, such 
as numbers, time and so on, lrq become more and more complex. Users can find the nearest and 
most relevant objects through spatial keyword query. However, with the development of 
personalized services, users are more likely to query objects that satisfy their preferences. For 
example, when inquiring about restaurants, users may have preferences for taste, service, hygiene, 
etc. Sometimes, this preference can be expressed by keywords, and sometimes by numerical values. 
Take an example, assuming that restaurants set a score for service level and hygiene level, this 
preference can be expressed as "service > 8.0" or "hygiene > 7.5". How to deal with these 
preferences making the query results be better meet the users’ needs is a very meaningful research 
issue. It was the first to study this issue by document [4]. It indexed users’ preference attributes by 
constructing synopses tree and combined with IR-tree [5]. When querying, whether they intersect 
with preference query intervals good or not is a judgement to the pruning effect. On this basis, a 
spatial keyword top-k query processing framework linq with user preference constraints is proposed. 
However, in real life, preference attributes may fluctuate greatly in the short term due to some 
changes, such as the replacement of chefs and waiters in catering and accommodation industries, 
and the renovation of the environment. Therefore, in recent years, the attribute query will be more 
in line with and better meet the needs of users. How to process these time-marked preference 
attribute datasets and establish an efficient index structure to enable users to query location-aware 
objects with Preference Constraints similar to recent taste and service > 8 is the key to solve the 
problem. 

According to the method proposed in document [4], it also can be used to process preference 
attribute data sets with time attributes after appropriate modification. However, there are some 
shortcomings: time is treated as a common numerical attribute, and it is added to preference 
attribute data sets to construct a synopses tree to deal with time attributes. As the dimension of the 
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synopses tree is increased, the estimation error rate increases, and more leaf nodes need to be 
accessed, which affects the query processing performance. In order to solve those problems, this 
paper proposes to take the time attribute as the time axis and construct a synopses tree under each 
time stamp, that is, to construct an index structure based on temporal and preference query (tpq). 
By associating tpq with IR-tree, constructing hybrid index structure tp-skq and corresponding 
optimization query algorithm, lrq with user preference constraints can be effectively processed. 

2. Related work 
2.1 Section Headings 

In recent years, with the popularity of lbs, the use of given query locations and query keywords 
to search related geographic text objects has attracted great attention [6, 7, 8]. In order to solve the 
lrq problem, many indexes have proposed the method of combining spatial and text information in 
the same data structure, such as IR-tree [5] and its variants. IR-tree associates an inverted file with 
each node in R-tree. The inverted file records where each keyword appears in the sub-nodes. 
WIR-tree [9] is a variant of IR-tree. It differs from IR-tree in that it aggregates objects in different 
ways. WIR-tree groups objects according to the keywords contained, so that the keywords shared 
by each group are as few as possible. BR-tree [10] indexed the text information by associating 
bitmaps of each node of the R tree. When querying, it pruned the nodes of the R tree according to 
whether the bitmap contained all the query keywords. Finally, it sorted the objects according to the 
distance proximity. However, these studies only focus on the query processing of spatial text data. 
When dealing with user preference constrained lrq, only all the information of the candidate result 
set can be obtained, and the final result set can be determined by judging whether it satisfies the 
preference query. The query efficiency is low. This paper focuses on lrq processing with user 
preference constraints. 

Many researchers have contributed to the problem of user preferences for querying a geo-text 
object. Document [11] proposes a multi-IRS index structure, which is a multi-tree index that can 
improve the index structure optimization based on a given query at runtime. It solves the problem 
that the hybrid index of IR-tree and synopses tree in document [5] can’t realize the optimization 
performance because the index creation process is consistent with the traditional method. Document 
[12] proposes an optimization technique for text attributes that can be included in Multi-IRS, which 
effectively reduces the cost of I/O access. Because the current research on preferences is still at its 
primary stage, the existing research results can’t meet the more complex and targeted needs of the 
public. In view of the above shortcomings, this paper proposes a hybrid index structure. 

3. Design and Analysis of TP-SKQ Hybrid Index Structure 
3.1 Description of the problem 

When we considering the time attribute, it is assumed that the position-aware object o is 
represented as a triad, which concludes λ,w and l. Then o.λ represents the position of the object, o.w 
represents a set of keywords, and o.l represents a set of numerical preference attributes. o.l contains 
the numerical preference attribute o.p and the time attribute o.t of o. Each value preference attribute 
data in l is distinguished by time, and l = {o1t1p1, o1t1p2, …oitjpk…}. 

The location-aware rank query based on the preference constraints (lrpq). Formally, a query q is 
a quintuple, q= (λ, w, c, f, k). Then q.λ represents the positional description of q, q.w the set of query 
keywords and q.c a set of numerical preference constraints. q.f is considered as a sorting function. 
q.k is the number of results returned. 

The required conditions of the query. A set of location-aware objects d and a query q which is 
based on preference constraints are given, to inquire q of all or q.k of its location-aware objects 
from the set of objects d to ensure that each object meets the constraints in the query of q.c. Then 
the output is sorted according to the formula q.f. The sorting formula is defined as follow: 
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f(𝑜𝑜, 𝑞𝑞) = �
0                                                         ¬𝑞𝑞(𝑜𝑜)          
𝑔𝑔(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑜𝑜, 𝑞𝑞), 𝑟𝑟𝑟𝑟𝑟𝑟(𝑜𝑜, 𝑞𝑞),                                    

 𝑠𝑠1(𝑜𝑜. 𝑝𝑝1), 𝑠𝑠2(𝑜𝑜.𝑝𝑝1), … )    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,
                                    (1) 

 
In this formula, ¬q (o) indicates that the location-aware object o does not satisfy the query 

constraint q.c. prox(o,q) is used to calculate the distance between the object location o.λ and the 
query location q.λ. rel(o,q) is used to calculate the relativity between the keyword set do and the 
query keyword q.w. s1 (o.p1 ),s2 (o.p1 ),…represents the preference attribute. o.p1 ,o.p2,… 
represents the scoring function. g is a monotonic function which adopts the linear combination 
function. 

 
Figure 1. A set of location-aware objects. 

3.2 TP-SKQ hybrid index structure 
First, based on the synopses tree, the tpq index structure is proposed to process the numeric 

attributes of the user preferences with time attributes. Then, combined with the spatial keyword 
index, a hybrid index structure tp-skq supporting spatial position, text and numerical attributes of 
user preferences with time attributes is proposed. 

3.2.1 Design of the TPQ index structure 
The tpq index structure is applied to index the numeric attributes of user preferences with time 

attributes. The construction of the temporal summary tree is roughly processed in two steps. At first, 
a timeline is to be built in chronological order. Then a tense-based profile tree is to be built. Namely, 
the tpq index structure. For example, to construct a tpq index structure for the data set in Fig.1. The 
data set gives a list of preferred value attributes for the last three days. Firstly, a timeline with 
timestamps (t) of 1, 2, 3 in chronological order is to be constructed. Then a profile tree is to be 
created under each timestamp. That is, when the timestamps t=1, 2, 3, three summary trees s1, s2, 
and s3 are respectively established. The construction of the summary tree is roughly divided into 
three steps. 

The factorization histogram. Firstly, as is shown in Fig.2 (a), a model of the moral map is to be 
built. In this model, each of these nodes represents an attribute, and each side represents a 
relationship between a pair of attributes. Then, a connection tree is to be created based on the 
ethical graph. Put the attributes together with the attributes which the former depends on. The 
connection tree is shown in Fig.2 (b). According to the connection tree, distributions of the taste 
rating and the service rating and the taste rating and the environmental rating is reserved. Other 
distributions can be derived from these two distributions. 
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(a)               (b) 

Figure 2. An example of junction tree. (a) The moral graph, (b) the junction tree. 
The construction of a global histogram. Construct a set of global histograms under the time axis 

th={t1h1,t1h2,…tnhk } for the entire preference attribute data set, in which tihj={bj1,bj2, …} is a 
global histogram under the time stamp ti and bjk is a histogram of a bucket. The collection of global 
histograms is used by all entries in the profile tree. Let b be the set of buckets in all histograms, b=
∪tihj, and |b| is the number of buckets in b. For any entry e, ensure there is an element |b| in an 
array e.b , where each element in the array is a statistic about e.d in a bucket. In this way, the array 
records the summary statistics of e.d . For example, a histogram of the two-dimensional data set 
(flavor score, service score) and (flavor score, environmental score) is constructed at timestamp t=2, 
as is shown in Fig.3 (a) and (b). It is assumed that eight buckets are available. t2h1 and t2h2 are 
respectively the global histograms of (flavor score, service score) and (taste score, environmental 
score). Fig.3 (c) shows the local information held by each entry, where R1, ..., R6 are the entries in 
the R-tree. 

 
(a)             (b)                                  (c) 

Figure 3. The histograms constructed for the example dataset. (a) t2h1, (b) t2h2, (c) local 
information. 

Use bit to represent the local information. In the example above, for each entry, counting 
information about each bucket is kept. In fact, it is enough to count some simple statistics since we 
only care about the satisfiability of the query of predicates in this work. Therefore, we use a 
compact representation of bit-based local information in each bucket and each partition is split into 
m partitions by successive two-dimensional partitioning in a round-robin fashion, and then an m-bit 
string is stored. If the corresponding partition is not empty, each bit is 1, if it, it is 0. Since the 
object instance in Fig.1 contains fewer attribute data sets, m=1 is used in this example to indicate 
whether the bucket is empty. As is shown in Fig.4, in order to describe the data distribution of the 
entry R4 with respect to b11, a 1-bit character string (m=1) is used, and since the corresponding 
partition is not empty, it is denoted as 1. The synopses in R4 under the timestamp t=2 is an array of 
bit strings corresponding to the buckets in the global histogram th. Therefore, the synopses of an 
entry is an array of strings corresponding to the buckets in the global histogram. 
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Figure 4. A synopses tree of the timestamp t = 2 

As is shown in Fig.5, the structures of s1, s2 and s3 are all related to the same R-tree. The nodes 
in the R-tree are respectively associated with the profiles in the three synopses trees. Each of the 
profiles records the distribution of the attribute dataset corresponding to the node under the 
timestamp. The structure of the tpq index is related to the R-tree associated. Suppose there are no 
timestamps, then each node stores n synopses tree under different timestamps and represents the 
dataset distribution of the R-tree nodes associated. For each entry in a non-leaf node in the R-tree, 
these n outlines are to be maintained to save information about buckets in n global histograms. An 
R-tree entry is associated with n profiles. Each of the profiles is an array of bit strings 
corresponding to the buckets in the global histogram at the corresponding timestamp. 

  
Figure 5. The tpq index structure diagram 

3.2.2 The combination of the tpq index and the spatial keyword index 
The tpq index structure summarizes the distribution of numerical preference properties based on 

tenses. It can solve some of the location-aware query and processing problems based on preference 
constraints. For example, a synopses tree can be used to find objects that meet the demands of 
service≥8∩taste≥8 in the past two days. In order to solve the problem of location-aware query 
processing based on preference constraints, the tpq index structure must be combined with other 
indexes both locational and textually. 

The tpq can be easily combined with the IR-tree [5]. The two is to be stored separately. The 
IR-tree can be built formally. Then a global histogram based on the tense is to be built. Fig.6 shows 
the tp-skq hybrid index structure constructed by the object instance shown in Fig.1. The R-tree lies 
in the center of the graph to index the position of the object. Each node in the R-tree, in addition to 
the pointer field that points to the child node and all the circumscribed rectangles that are recorded 
in the child node, is associated with two additional components: the synopses of the document in 
the IR-tree and the synopses of the different timestamps in the tpq. The inverted files and the like, 
the synopses and the R-tree are stored separately. 
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Figure 6. Tp-skq hybrid index structure diagram 

3.3 Updating and Maintenance of the Index Strucure 
3.3.1 Insertion Algorithm 

Algorithm 1 describes the insertion algorithm. First, find the appropriate inserted leaf node n for 
the object o, and then add o to the leaf node n and update the summary and inverted files of the 
node n (line1-4). If there is no extra space in the node to store o.λ, split node n and calculate the 
summary and inverted files of the two nodes. In line 7, the synopses of nodes n and nn is to be 
calculated. Each node contains multiple profiles separated by timestamps. n.syn and nn.syn are 
calculated based on their entries. Then determine if n is the root node. The summary of n is to be 
updated, namely, some bits under each timestamp are changed from 0 to 1. The update is trivial 
because the new data only affects a few partitions. 

Table 1. Insertion algorithm. 

Algorithm 1.Insert (O) 
(1) n→ChooseLeaf(o.λ) 
(2) Add o.λ to n 
(3) Update n.syn 
(4) Update n.InvFile 
(5) If n don’t have extra space Then 
(6)  {n,n}←SplitNode(n) 
(7)  Compute n.syn and nn.syn 
(8)  Compute n. InvFile and nn. InvFile 
(9)  If n is root then 
(10)   Initialize a new node n0,let n and nn be children of n0,and set 

n0  
be the new root 
(11)   Else 
(12)   Ascend from n to the root, adjusting the covering mbrs, 

updating  
synopses and propagating node splits as necessary 
(13) end if 
(14) else if n is not root then 
(15) Update n.syn 
(16) Update n. InvFile 
(17) end if 

3.3.2 Deletion Algorithm 
Algorithm 2 describes the deletion of the algorithm. Firstly, assign the root node of the tree to 

node n (line 1). Then find out the entry e containing o.l in loop n. Determine if e is a leaf node, if 
not, assign e to n. Repeat from line 2 to find the leaf node containing o. λ. o. λ is then removed from 
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the found leaf nodes. The leaf node's summary and inverted files are updated. Finally, adjust the 
tree (Concentrate Tree method), use the linked list q-list to store the entries contained in the deleted 
node (line 1 of the Concentrate Tree method). Determine if n is the root node (line 2 of the 
Concentrate  

Table 2. Deletion algorithm. 
Algorithm 2. Delete(O) 
(1) n←root of R-tree 
(2) Foreach e in n[index] Do 
(3)  If e.mbr intersects with o. λThen  
(4)   If e is not leaf node; 
(5)    n←e Then goto(2) ; 
(6)   Else 
(7)    break; 
(8)   End If 
(9)  End if 
(10) End 
(11) When E is not leaf node, terminate the whole algorithm; 
(12) Delete o. λfrom e; 
(13) Update e.syn; 
(14) Update e. InvFile; 
(15) ConcentrateTree (e); 
(16) Adjust root of tp-skq;  
ConcentrateTree (n) 
(1) q-list←NewQueueList; 
(2) If n.Level is tree.Height Then 
(3)      Goto(17); 
(4) Else 
(5)   p is parent of n;  
(6)   en←p point to n; 
(7)   If n.entryCount m Then 
(8)     Delete en from p; 
(9)     q-list←all the entrys in n; 
(10)    Else 
(11)      Adjust N.MBR to surround n.entrys; 
(12)      End If 
(13)      Update p.syn; 
(14)      Update p.syn; 
(15)      Set n←p; goto(2); 
(16) End If 
(17) ReInsert all remain entries of q-list 

Tree method). If it is, re-insert the nodes in the q-list into the tree, where the entries originally 
contained in the leaf nodes are reinserted with the insertion algorithm. For those entries originally 
included in the non-leaf nodes, they must be inserted into the nodes of the layer where the non-leaf 
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nodes are before the deletion to ensure that the entries pointed to by the non-leaf nodes are still in 
the same layer in the R-tree (line 5-6 of the Concentrate Tree method). If n is not the root node of 
the tree, then the parent node P of n is to be found, and let en be a pointer to n stored in the p node 
(line 17 of the Concentrate Tree method). When the number of entries contained in n is less than the 
minimum threshold m, en is to be deleted from p, and all entries in n are to be inserted in the q-list. 
If n is not deleted, then adjust en.i so that it can just cover the mbr of all entries in n (line 7-12 of the 
Concentrate Tree method). Update the synopses tree and inverted files of the parent node p (lines 
13-14 of the Concentrate Tree method). Let n be equal to p and then repeat the operation from line 2 
of the Concentrate Tree method (line 15 of the Concentrate Tree method). Compress the tree. When 
there is only one child node in the root node, set this child node as a new root node and delete the 
original root node (line 16 of the Concentrate Tree method). 

3.3.3 Modification Algorithm 
Algorithm 3 describes the modification of the algorithm. The modification operation on the 

tp-skq hybrid index structure is related to the change of the location information o.λ, the text 
information o.w and the numerical attribute information o.p of the location-aware object o. When it 
comes to changing o. λ, it is actually a combination of insert operation and delete operation. When o. 
λ is modified, it will definitely change the minimum enclosing rectangle in its node, that is, deleting 
the original record information of the object o from the tp-skq and inserting the modified record. 
When the o. λ is not to be modified, assign the root node of the tree to node n (line 5). Then 
recycling the entries in loop n to find out the entry e containing o (line 6-7). If o.w is modified, then 
update the inverted file information in e (line 8-10). If o.p is modified, update the summary in e 
(line 11-13). Finally, determine whether e is a leaf node. If it is not, assign e to n and repeat this 
process from line 2 to find out the leaf node containing o. λ (line 14-20). Then find o and modify 
o.w and o.p (line 21-28). 

Table 3. Modification algorithm. 

Algorithm 1. modify (O) 
(1)n←root of R-tree; 
(2)Foreach e in n[index] Do 
(3)If e.mbr intersects with 

o. λ Then  
(4)  If modify o.w Then 
(5)   Update e.InvFile; 
(6)  End 
(7)  If modify o.p Then 
(8)   Update e.syn; 
(9)  End 
(10)  If e is not a leaf node; 
(11)   n←e Then goto(6) ; 
(12)  Else 
(13)   break; 
(14)  End If 
(15) End if 
(16) End Foreach 
(17) Find o in e [index]; 
(18) If modify o.w Then 
(19) Update o.w; 
(20) End 
(21) If modify o.p Then 
(22)  Update o.p; 
(23) End 
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3.4 Query Algorithm 
Firstly, initialize the top-k to maintain the current result of the top-k. Put the root node root into 

the priority queue pq (line 1-2). According to the timestamp in the query predicate, select the global 
histogram h and the connection tree under this timestamp (line 3-4). Then determine if the priority 
queue pq is empty. When the pq is not empty, the first element in the pq is to be taken out and the 
matching score in it is to be assigned to do, and the object or node is assigned to n (line 5-6). Finally, 
each node n is to be determined. If n is the object, insert it into the top-k, and if the result of the 
top-k is q.k, then return to the top-k (lines 7-11). If n is an internal node instead of a leaf node, then 
for each entry e inn, based on the timestamp in the query predicates, select the summary under the 
timestamp in e. Then estimate maxf (e,q) on the basis of this summary. If the maxf (e, q) is greater 
than 0, it means that there may be objects in the entries contained in e that satisfy the query 
predicate. Thus, e and maxf (e, q) are added to the queue pq. pqs are sorted by matching scores (line 
12-20).  

In the algorithm, the priority queue pq is used to track nodes and objects and is arranged in 
descending order of scores. The result set is stored in top-k. F (e, q) is calculated according to 
Equation 1 and maxf (e, q) Equation 2. 

 

max 𝑓𝑓 (𝑛𝑛, 𝑞𝑞) = �
0                                                                                             , 𝑞𝑞(𝑛𝑛) = ∅
𝑚𝑚𝑚𝑚𝑚𝑚(𝑔𝑔(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑒𝑒, 𝑞𝑞), 𝑟𝑟𝑟𝑟𝑟𝑟(𝑒𝑒, 𝑞𝑞), 𝑠𝑠1(𝑒𝑒.𝑝𝑝1), 𝑠𝑠2(𝑒𝑒.𝑝𝑝2), … ), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      (2) 

 
Q (n) represents a set of objects satisfying the query predicate surrounded by the node n. prox (e, 

q) is the spatial proximity of mbr and q.λ corresponding to e. prox (e, q) is represented by the 
reciprocal of the shortest distance between q. λ and mbr of entry e. rel (e, q) represents the textual 
similarity between the document set do and q.w. And e.pi represents the score calculated by the 
numerical attribute p in e.d. And s1 (.),s2(.),… represents the scoring function of attributes e.p1, 
e.p2,....Among them, e.pi represents the pi attribute of all objects in the item e. The maximum value 
is to be taken in this calculation. 

Table 4. Query algorithm 

Algorithm 4. 
(1) top-k is null; 
(2) pq.push (Root,0); 
(3) select the junction tree j and global histograms h by 

q.c; 
(4) rds(root)←Precomputation (q, root, j, h); 
(5) While pq is not null Do  
(6)  n and d←pq.pop(); 
(7)  If n is an object Then 
(8)   topk.insert(n); 
(9)   If top-k.count equals q.k; 
(10)    break; 
(11)   End If 
(12)  Else If n is not a leafNode Then 
(13)   Foreach e in n[index] Do 
(14)    select the e.synopse by q.c; 
(15)    maxf(e,q)←Estimate(e); 
(16)    d←maxf(e,q); 
(17)    If d is greater than 0 Then 
(18)     pq.push(e,d); 
(19)    End If 
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4. Experimental Results and Analysis 
4.1 Experimental Environment 

Experiments were carried out under 64-bit Microsoft Windows 7 operating system. All 
experiments were carried out using C # development language and Visual Studio 2010 development 
tools. Hardware environment: Inter (R) Core (TM) i5-2450M CPU@2.50GHz, 4GRAM. The 
experimental data set of this experiment uses real data and synthetic data. The real data is the 
non-private data (business name, address, cuisine, taste, environment, etc.) of the gourmet 
merchants published by the public comment website. After processing, it contains 50,000 objects 
with geographic location and text attributes (name, keyword, etc.) and three numerical attributes 
(taste, service, and environment). Composite data is attribute data set, which is used to generate 
attribute data (taste, service, environment, time) for d days. The values of each attribute are 
generated randomly and independently, in order to better verify the good query performance based 
on tp-skq. Because the main difference between tp-skq and improved IR-synopses tree is the 
processing of attribute data, all experiments are carried out under the condition that the number of 
objects is 50,000. 

4.2 Experimental Result. 
In this experiment, under different parameters, 100,000 attribute data sets, 300,000 attribute data 

sets and 600,000 attribute data sets under 50,000 objects are used to test the performance of tp-skq 
index. Queries involve location, keywords, preference attributes, and time. The preferences pruning 
query based on tp-skq is compared with the query based on improved IR-synopses tree. 

(1) Index performance comparison 
TP-SKQ and improved IR-synopses trees are constructed on test datasets with different attribute 

data quantities. As shown in Fig.7, the build times of the two are quite different. In different size 
attribute datasets, the time of building an IR-synopses tree based on tp-skq is significantly shorter 
than that of building an IR-synopses tree. Moreover, with the increase of the amount of attribute 
data, the performance advantage of tp-skq is more obvious. 

The difference of the construction time of the two hybrid index structures is mainly reflected in 
the time of constructing global histogram. In fact, according to the particularity of temporal 
attributes, the process of constructing global histogram in tp-skq is to reduce the dimension of 
global histogram constructed in IR-synopses tree, and to group attribute datasets according to time, 
so as to avoid using all attribute datasets to construct histogram at one time, so the construction time 
gap between the two index structures is becoming more and more obvious. 

 
Figure 7. Index structure performance contrast 

(2) Comparison of query time under different data quantities 
When other parameters are default values, the query time of two different index structures varies 

with the size of attribute data as shown in Fig.8. The query time under two different index structures 
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increases with the increase of the amount of attribute data. Under different attribute dataset sizes, 
summary pruning queries based on tp-skq are more efficient than those based on IR-synopses tree, 
and the gap increases with the increase of the amount of attribute data. This is due to the fact that 
the temporal profile tree is used to estimate the pruning time and the estimation error rate in the 
query process of the summary pruning query based on tp-skq, so the query time is reduced. 
Moreover, with the increase of attribute data, the estimation error rate of query based on 
IR-synopses tree will increase gradually in the query process, so the query time will increase 
relatively fast. This demonstrates the superiority of the performance of summary pruning query 
based on tp-skq. 

 
Figure 8. The query time contrast 

(3) Comparison of query time under different k values 
When other parameters are default values, the query time of two different index structures under 

different k values is shown in Fig.9. With the increasing number of requests k, the query time spent 
on the tp-skq pruning query and the IR-synopses tree query is increasing. The reason is that as the 
number of search result sets increases, more nodes or objects need to be estimated, so the time 
increases. Because the query time of the proposed base on the tp-skq index preference pruning 
query is always shorter than that of the IR-synopses based query under any k value, it can be 
concluded that the tp-skq index preference pruning query has better query performance. 

 
Figure 9. K value change of the contrast 

(4) Coverage of different predicates 
When the amount of attribute data is 300,000, the query time of two different index structures 

under different predicate coverage is shown in Fig.10. With the increasing coverage of predicates, 
the query time spent on both tp-skq pruning queries and IR-synopses tree queries is increasing, and 
the gap between them is getting smaller and smaller. The reason is that with the increase of 
predicate coverage, the satisfiability of node profiles increases and the number of searchable nodes 
increases, so both of them increase in time. It is also due to the increasing satisfiability of node 
profiles, the decreasing error rate of IR-synopses tree and the decreasing query advantage of tp-skq, 
which leads to the smaller and smaller gap. 
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Figure 10. Predicate coverage change under 300000 attribute data set 

In real life, users tend to be interested in objects with low coverage of predicates when querying 
predicates. For example, for restaurants with taste>9 and restaurants with taste score > 8, users 
often prefer the former, so it can be concluded that preference pruning queries based on tp-skq have 
better query performance. 

When the amount of attribute data is 100,000 and 600,000, the query time of two different index 
structures under different predicate coverage is shown in Fig.11. From Fig.11, we can see that under 
100,000 and 600,000 attribute data, the change rule of query time with the increase of predicate 
coverage is the same as that under 300,000 attribute data. With the increase of attribute data, the 
query time gap between the two index structures becomes more and more obvious. The query 
performance advantage of preference pruning query based on tp-skq is more and more obvious. 

 
(a)                                   (b) 

Figure 11. Predicate coverage change under 100000 and 600000 attribute data set 

5. Conclusion 
Location-aware ranking query has become a research hotspot in recent years, but the research of 

location-aware ranking query based on user preference constraints has just begun. In this paper, a 
hybrid index structure of tp-skq is proposed to deal with location-aware ranking queries based on 
user preference constraints. A general pruning query algorithm based on tp-skq is given, and 
compared with existing algorithms in pruning rate, query time, index establishment time and so on. 
The experimental results show that the proposed index and its corresponding algorithm have the 
advantages of short index establishment time, high efficiency of pruning using user preference 
attributes and high query efficiency. Although the method proposed in this paper has obvious 
advantages, it still has some limitations. Therefore, the next step is to design an experimental 
system that can automatically select the optimal number of barrels in the global histogram 
according to the size of different attribute datasets when constructing tp-skq. 

Acknowledgments 
I would like to express my gratitude to all those who helped me during the writing of this thesis. 

First of all, I gratefully acknowledge the help of my supervisor, who has offered me valuable 

0

0.1

0.2

0.3

0.4

0.5

1 %  2 %  3 %  5 %  1 0 %  1 5 %  2 0 %  3 0 %  
ti
me

/s
 

Predicate coverage 

improved IR-synopses tree tp-skq

0

0.1

0.2

0.3

0.4

0.5

1 %  2 %  3 %  5 %  1 0 %  1 5 %  2 0 %  3 0 %  

ti
me

/s
 

Predicate coverage 

improved IR-synopses tree tp-skq

0

0.2

0.4

0.6

1 %  2 %  3 %  5 %  1 0 %  1 5 %  2 0 %  3 0 %  

ti
me

/s
 

Predicate coverage 

improved IR-synopses tree tp-skq

204



  

 

 

suggestions in the academic studies. Without her patient instruction, insightful criticism and expert 
guidance, the completion of this thesis would not have been possible. Second, I would like to 
sincerely thank the other students in the laboratory for their help and valuable suggestions in my 
study and life. Last, I should finally like to express my gratitude to my beloved parents who have 
always been helping me out of difficulties and supporting without a word of complaint. 

References 
[1]  Liu XP, Wan CX, Liu DX, Liao GQ. Survey on spatial keyword search. Ruan Jian Xue 
Bao/Journal of Software, 2016, 27 (2):329−347 (in Chinese). 
http://www.jos.org.cn/1000-9825/4934.htm 
[2] Chen L, GAO Y, Chen G, et al. Metric All-k-Nearest-Neighbor Search [J]. Knowledge & Data 
Engineering IEEE Transactions on, 2016, 28 (1): 1 - 1. 
[3] Chen L, Cong G, Jensen C S, et al. Spatial Keyword Query Processing: An Experimental 
Evaluation [J]. Proceedings of the Vldb Endowment, 2013, 6 (3): 217 - 228. 
[4] X. Liu, L. Chen, and C. Wan. LINQ: A Framework for Location-aware Indexing and Query 
Processing [J]. IEEE TKDE, 2015, 27 (5): 1288 - 1300. 
[5] Li Z, Lee K C K, Zheng B, et al. IR-Tree: An Efficient Index for Geographic Document Search 
[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23 (4): 585 - 599. 
[6] Zhou AY, Yang B, Jin C, Ma Q. Location-Based services: Architecture and progress. Chinese 
Journal of Computers, 2011, 34 (7): 1155−1171 (in Chinese with English abstract). [doi: 
10.3724/SP.J.1016.2011.01155]. 
[7] Chen L, Cong G, Jensen C S, et al. Spatial keyword query processing: an experimental 
evaluation[C]// International Conference on Very Large Data Bases. 2013. 
[8] Zhang D, Tan K L, Tung A K H. Scalable top-k spatial keyword search[C]// International 
Conference on Extending Database Technology. 2013. 
[9] Wu DM, Yiu ML, Cong G, Jensen CS. Joint top-K spatial keyword query processing. IEEE 
Trans. on Knowledge and Data Engineering, 2012, 24 (10): 1889−1903. [doi: 
10.1109/TKDE.2011.172]. 
[10] Zhang D, Chee Y M, Mondal A, et al. Keyword Search in Spatial Databases: Towards 
Searching by Documen t [C]// IEEE International Conference on Data Engineering. 2009. 
[11] U. Buranasaksee, K. Porkaew, "Multi-IRS: Multiple Trees Indexing for Generic 
Location-Aware Rank Query [C]", WCSE, 2016: 518 - 524. 
[12] Buranasaksee U. Optimization of Textual Attribute Support in Generic Location-aware Rank 
Query[C]// IEEE International Conference on Computer and Communications. IEEE, 2017: 
1206-1210. 
[13] Tzoumas K, Deshpande A, Jensen C S. Lightweight Graphical Models for Selectivity 
Estimation without Independence Assumptions [J]. Pvldb, 2011, 4: 852 - 863. 

205


	1. Introduction
	2. Related work
	3. Design and Analysis of TP-SKQ Hybrid Index Structure
	4. Experimental Results and Analysis
	5. Conclusion
	Acknowledgments
	References



